The coronavirus disease 2019 (CVOID-19) has varied clinical manifestations including mild to severe acute respiratory symptoms. Inflammasome complex and mitochondria play an important role in initiating inflammatory responses and could potentially be affected by this infection. To study the inflammasome and mitochondrial fission and fusion gene expression levels in COVID-19 patients, we designed this experiment. The inflammasome and mitochondrial gene expression profiles were determined by real-time polymerase chain reaction in the peripheral blood of 70 hospitalized CVOID-19 patients with mild to moderate symptoms (HOSP) and 30 ICU patients with severe symptoms (ICU) compared to 20 healthy controls (HC). The results indicated that the expression of the dynamin-related protein-1 was extremely suppressed in HOSP while it came back to the normal range in the ICU group. However, the expression of fission 1 protein had a non-significant increase in HOSP and a decrease in the ICU group. The mitofusin-1 and dominant optic atrophy genes showed high expression levels (10-fold) and (70-fold), respectively, in the HOSP group. However, mitofusin-2 significantly decreased in both groups. Although leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and apoptosis-associated speck-like protein containing a caspase activating and recruitment domain genes dramatically increased in both groups (10 and 4-fold), other inflammasome genes declined in both groups. Finally, Nuclear factor kappa-light-chain-enhancer of activate d B cells (NF-κB) extremely decreased, and Intreleukine-1 showed high expression in ICU patients (3-fold). CVOID-19 infection suppresses the fission genes and elevates the fusion gene expression in mitochondria, and it can cause activation of the inflammasome via the NLRP3 pathway.
Keywords: Corona disease 2019 (COVID-19); Inflammasome; Mitochondria.