Polymers have been integral to the advancement of biomedicine, owing to their exceptional versatility and functionality. Among these, polyvinyl alcohol (PVA) and chitosan both natural polymers stand out for their remarkable biocompatibility, biodegradability, and unique properties. This review article provides a comprehensive examination of the diverse applications of PVA and chitosan in three pivotal areas: tissue engineering, drug delivery, and biosensors. In tissue engineering, the discussion centres on how PVA and chitosan are engineered into scaffolds that not only support cell growth and differentiation but also promote tissue regeneration by closely mimicking the extracellular matrix. These scaffolds offer the necessary mechanical strength and adaptability for various biomedical applications. For drug delivery, the article delves into the development of sophisticated controlled release systems and targeted drug carriers, highlighting the polymers' customizable properties and their mucoadhesive nature, which make them highly effective across multiple drug delivery methods. Furthermore, the potential of PVA and chitosan in biosensor technology is explored, particularly their ability to interact with biomolecules and their intrinsic conductivity attributes that are essential for creating sensitive, reliable, and biocompatible sensors for medical diagnostics. By synthesizing recent research findings and suggesting future research directions, this review underscores the versatility and critical role of PVA and chitosan in pushing the boundaries of biomedical innovation. It offers valuable insights for researchers and scientists dedicated to advancing healthcare through the application of these natural polymers.
Keywords: Biomedical sensors; Chitosan; Drug delivery; PVA; Tissue engineering.
Copyright © 2024 Elsevier B.V. All rights reserved.