In this review, user experience (UX) of recent lower limb exoskeletons (LLEs) and its improvement methodologies are investigated. First, statistics based on standardised and custom UX evaluations are presented. It is indicated that, LLE users have positive UX, especially in the aspects of safety, dimension and effectiveness. Further, overall, UX levels of ankle and hip-knee exoskeletons are higher than those of other exoskeleton types; unilateral LLEs have higher mean UX levels than that of the bilateral ones. Then, design practices for improving UX are studied; the focused points are burden reduction and improvement of device fit. The former is achieved through lightweight design and approaches that reduce device's moment of inertia (MOI) at mechanical joints. Works on the latter refer to the endeavours to enhance static and dynamic fit; they mainly rely on the optimisations of human-robot interface (HRS) and endeavours to rectify misalignment of axes of mechanical and anatomic joints, respectively. The following section is control approaches to enhance wearing comfort level; it is mainly focused on adaptive, interaction and compensation-based controls. Finally, existing problems and future directions are stated and prospected respectively.
Keywords: User experience; burden reduction; control strategies; lower-limb exoskeletons; wearing comfort.