Fungal endophytes play an important role in improving the health and productivity of native and cultivated plant species. Despite their ecological and industrial importance, few eucalypt species have been studied in terms of their endophyte communities. We examined the seasonal and spatial dynamics of fungal leaf endophytes in the model species, Eucalyptus crebra (narrow-leaved ironbark), using ITS-based amplicon sequencing. Alpha and beta diversity analyses revealed significantly higher species richness in summer compared to autumn and spring. Similarly, two-way ANOVA analysis showed significantly higher species diversity in summer compared to autumn (observed p < 0.001, Chao1 p < 0.005) and spring (observed p < 0.005, Chao1 p < 0.005). No difference in Shannon index was observed among different canopy levels across the season. Beta-diversity showed differences in fungal composition across the seasons and at various canopy levels based on unweighted UniFrac distance metric (PERMANOVA season p < 0.001, canopy p < 0.05), signifying distinct separation of fungi based on presence-absence. Ascomycota was the most abundant and diverse phylum and was present throughout the year. In contrast, Basidiomycota was only observed during cooler and drier seasons. Neofusicoccum was the most abundant genus, but distribution fluctuated significantly across the seasons. Pestalotiopsis and Neopestalotiopsis were most abundant in the low leaf canopy, whereas Pseudosydowia was most abundant in the high canopy. This study indicates that the diversity and abundance of endophytic fungi in the leaves of healthy E. crebra trees fluctuate seasonally and across canopy levels. The data generated can be used as a baseline for assessing and potentially modulating the health of E. crebra and other important Eucalyptus spp.
Keywords: Eucalyptus crebra; Canopy level; Endophytes; Fungal communities; Potential pathogens; Season.
© 2024. The Author(s).