Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high- cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi Sr CaCu O . Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.
Keywords:
Angle-resolved photoemission spectroscopy (ARPES); gap inhomogeneity; high-
This work pioneers high-resolution micro-ARPES for the first-time quantitative mapping and analysis of micro-scale superconducting gap inhomogeneity in high-Tc cuprate superconductors.
© 2024 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.