A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation

IEEE J Transl Eng Health Med. 2024 Nov 4:12:697-710. doi: 10.1109/JTEHM.2024.3491612. eCollection 2024.

Abstract

To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver function.This research presents a novel approach to automating liver segmentation by identifying seven key anatomical landmarks using portal venous phase images from contrast-enhanced magnetic resonance imaging (CE-MRI). By employing a multi-task learning framework, we synchronized the detection of these landmarks with the segmentation process, resulting in accurate and robust delineation of the Couinaud segments.To comprehensively validate our model, we included multiple patient types in our test set-those with normal livers, diffuse liver diseases, and localized liver lesions-under varied imaging conditions, including two field strengths, two devices, and two contrast agents. Our model achieved an average Dice Similarity Coefficient (DSC) of 85.29%, surpassing the next best-performing models by 3.12%.Our research presents a pioneering automated approach for segmenting Couinaud segments using CE-MRI. By correlating landmark detection with segmentation, we enhance surgical planning precision. This method promises improved clinical outcomes by accurately adapting to anatomical variability and reducing potential postoperative complications.Clinical impact: The application of this technique in clinical settings is poised to enhance the precision of liver surgical planning. This could lead to more tailored surgical interventions, minimization of operative risks, and preservation of healthy liver tissue, culminating in improved patient outcomes and potentially lowering the incidence of postoperative complications.Clinical and Translational Impact Statement: This research offers a novel automated liver segmentation technique, enhancing preoperative planning and potentially reducing complications, which may translate into better postoperative outcomes in hepatic surgery.

Keywords: Couinaud segments; MRI; landmark detection; multi-task learning; segmentation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anatomic Landmarks
  • Deep Learning*
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Liver Diseases / diagnostic imaging
  • Liver Diseases / surgery
  • Liver* / anatomy & histology
  • Liver* / diagnostic imaging
  • Liver* / surgery
  • Magnetic Resonance Imaging* / methods

Grants and funding

This work was supported in part by the National Natural Science Foundation of China under Grant 61971091, in part by Dalian Young Stars of Science and Technology Project Support Program under Grant 2022RQ074, and in part by Dalian Medical Science Research Program under Grant 2212011.