Trajectories of human brain functional connectome maturation across the birth transition

PLoS Biol. 2024 Nov 19;22(11):e3002909. doi: 10.1371/journal.pbio.3002909. eCollection 2024 Nov.

Abstract

Understanding the sequence and timing of brain functional network development at the beginning of human life is critically important from both normative and clinical perspectives. Yet, we presently lack rigorous examination of the longitudinal emergence of human brain functional networks over the birth transition. Leveraging a large, longitudinal perinatal functional magnetic resonance imaging (fMRI) data set, this study models developmental trajectories of brain functional networks spanning 25 to 55 weeks of post-conceptual gestational age (GA). The final sample includes 126 fetal scans (GA = 31.36 ± 3.83 weeks) and 58 infant scans (GA = 48.17 ± 3.73 weeks) from 140 unique subjects. In this study, we document the developmental changes of resting-state functional connectivity (RSFC) over the birth transition, evident at both network and graph levels. We observe that growth patterns are regionally specific, with some areas showing minimal RSFC changes, while others exhibit a dramatic increase at birth. Examples with birth-triggered dramatic change include RSFC within the subcortical network, within the superior frontal network, within the occipital-cerebellum joint network, as well as the cross-hemisphere RSFC between the bilateral sensorimotor networks and between the bilateral temporal network. Our graph analysis further emphasized the subcortical network as the only region of the brain exhibiting a significant increase in local efficiency around birth, while a concomitant gradual increase was found in global efficiency in sensorimotor and parietal-frontal regions throughout the fetal to neonatal period. This work unveils fundamental aspects of early brain development and lays the foundation for future work on the influence of environmental factors on this process.

MeSH terms

  • Brain* / diagnostic imaging
  • Brain* / growth & development
  • Brain* / physiology
  • Connectome* / methods
  • Female
  • Fetus / physiology
  • Gestational Age*
  • Humans
  • Infant
  • Infant, Newborn
  • Longitudinal Studies
  • Magnetic Resonance Imaging* / methods
  • Male
  • Nerve Net / diagnostic imaging
  • Nerve Net / growth & development
  • Nerve Net / physiology
  • Pregnancy

Grants and funding

This work was supported by National Institute of Mental Health (NIMH, https://www.nimh.nih.gov/) grant MH122447 and National Institute of Environmental Health Sciences (NIEHS, https://www.niehs.nih.gov/) grant ES032294 for M.E.T. and C.J.T., NIMH grants MH126468, MH110793 and National Institute on Drug Abuse (NIDA, https://nida.nih.gov/) grant DA055338 for M.E.T., and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, https://www.nichd.nih.gov/) grant K99HD113873 for L.J. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.