Identifying cell populations associated with risk variants is essential for uncovering cell-specific mechanisms that drive disease development and progression. Integrating genome-wide association studies (GWAS) with single-cell RNA sequencing (scRNA-seq) has become an effective strategy for detecting trait-cell relationships. The accumulation of trait-related single cell data has led to an urgent need for its comprehensively processing. To address this, we developed sc2GWAS (https://bio.liclab.net/sc2GWAS/), which aims to document large-scale GWAS trait-cell regulatory pairs at single-cell resolution and provide comprehensive annotations and enrichment analyses for these related pairs. The current version of sc2GWAS curates a total of 15 078 310 candidate trait-cell pairs from > 6 300 000 individual cells, offering a valuable resource for exploring complex regulatory relationships between traits and cells. We applied strict quality control measures on both scRNA-seq data and GWAS data, ensuring the reliability and accuracy of the datasets for the identification of trait-relevant cells and genes. In addition, sc2GWAS provides ranked lists of trait-relevant genes and extensive (epi) genetic annotations, making it a valuable resource for downstream analyses. We demonstrate the utility of the platform by investigating Alzheimer's disease, where we identified significant associations between the disease and microglial cells, with the APOE gene emerging as particularly significant. This platform facilitates detailed research into complex trait-cell and trait-gene interactions, we anticipate that sc2GWAS will become a comprehensive and valuable platform for exploring GWAS trait-cell regulatory mechanisms.
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.