Objective: Behavioral interventions have been shown to ameliorate the electroencephalogram (EEG) dynamics underlying the behavioral symptoms of autism spectrum disorder (ASD), while studies have also demonstrated that mirror neuron mu rhythm-based EEG neurofeedback training improves the behavioral functioning of individuals with ASD. This study aimed to test the effects of a wearable mu rhythm neurofeedback training system based on machine learning algorithms for children with autism.
Methods: A randomized, placebo-controlled study was carried out on 60 participants aged 3 to 6 years who were diagnosed with autism, at two center-based intervention sites. The neurofeedback group received active mu rhythm neurofeedback training, while the control group received a sham neurofeedback training. Other behavioral intervention programs were similar between the two groups.
Results: After 60 sessions of treatment, both groups showed significant improvements in several domains including language, social and problem behavior. The neurofeedback group showed significantly greater improvements in expressive language (P=0.013) and cognitive awareness (including joint attention, P=0.003) than did the placebo-controlled group.
Conclusion: Artificial intelligence-powered wearable EEG neurofeedback, as a type of brain-computer interface application, is a promising assistive technology that can provide targeted intervention for the core brain mechanisms underlying ASD symptoms.
Keywords: artificial intelligence; autism spectrum disorder; brain-computer interface; mu rhythm; neurofeedback training; wearable technology.
© 2024. Huazhong University of Science and Technology.