Concurrent localized radiotherapy and systemic chemotherapy are standards of care for many cancers, but these treatment regimens cause severe adverse effects in many patients. Herein, we report the design of a mixed-ligand nanoscale metal-organic framework (nMOF) with the ability to simultaneously enhance radiotherapeutic effects and trigger the release of a potent chemotherapeutic under X-ray irradiation. We synthesized a new functional quaterphenyl dicarboxylate ligand conjugated with SN38 (H2QP-SN) via a hydroxyl radical-responsive covalent linkage. Because of the similar length of QP-SN and bis(p-benzoato)porphyrin (DBP) ligands, QP-SN was incorporated into Hf-DBP nMOF to afford a novel multifunctional mixed-ligand Hf-DBP-QP-SN nMOF with good biocompatibility. Hf-DBP-QP-SN not only enhances radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process but also increases ·OH generation from radiolysis with electron-dense Hf12 secondary building units (SBUs) to release SN38 from Hf-DBP-QP-SN for chemotherapy. Elevated levels of hydrogen peroxide in the tumor microenvironment further stimulate the release of SN38 by enhancing ·OH generation under X-ray irradiation. With low doses of X-ray irradiation, Hf-DBP-QP-SN suppressed the growth of CT26 colon and 4T1 breast tumors by 93.5% and 95.2%, respectively, without any sign of general toxicity. Our study highlights the potential of using ionizing radiation-mediated chemistry for on-demand activation of nanotherapeutics for synergistic radiotherapy and chemotherapy without causing severe adverse effects.