Simultaneously quantifying a novel five-component anti- migraine formulation containing ergotamine, propyphenazone, caffeine, camylofin, and mecloxamine using UV spectrophotometry and chemometric models

BMC Chem. 2024 Nov 20;18(1):233. doi: 10.1186/s13065-024-01339-4.

Abstract

This study presents a new method for simultaneously quantifying a complex anti-migraine formulation containing five components (ergotamine, propyphenazone, caffeine, camylofin, and mecloxamine) using UV spectrophotometry and chemometric models. The formulation presents analytical challenges due to the wide variation in component concentrations (ERG: PRO: CAF: CAM: MEC ratio of 0.075:20:8:5:4) and highly overlapping UV spectra. To create a comprehensive validation dataset, the Kennard-Stone Clustering Algorithm was used to address the limitations of arbitrary data partitioning in chemometric methods. Three different chemometric models were evaluated: Classical Least Squares (CLS), Partial Least Squares (PLS), and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Among these, MCR-ALS demonstrated excellent performance, achieving recovery values of 98-102% for all components, accompanied by minimal root mean square errors of calibration (0.072-0.378) and prediction (0.077-0.404). Moreover, the model exhibited high accuracy, with relative errors ranging from 1.936 to 3.121%, bias-corrected mean square errors between 0.074 and 0.389, and a good sensitivity (0.2097-1.2898 μg mL-1) for all components. The Elliptical Joint Confidence Region analysis further confirmed the predictive performance of the models, with MCR-ALS consistently showing the smallest ellipses closest to the ideal point (slope = 1, intercept = 0) for most analytes, indicating superior accuracy and precision. The approach's sustainability was rigorously assessed using six advanced metrics, validating its environmental friendliness, economic viability, and practical application. This approach effectively resolves complex pharmaceutical formulations, contributing to sustainable development objectives in quality control processes.

Keywords: Chemometric models; Kennard stone clustering algorithm; Multi-component pharmaceutical analysis; Sustainability assessment; UV Spectrophotometry.