Axonal pathfinding in organ-cultured embryonic avian retinae

Dev Biol. 1986 Apr;114(2):296-310. doi: 10.1016/0012-1606(86)90194-6.

Abstract

Eye cups from stage 14-28 (E2 to E5) chick and quail embryos consisting of neural retina, lens, and vitreous body were cultured for 1 or 2 days. These eyes expanded by proliferation of the retinal cells and the surface areas of the retinae increased several-fold. The area covered by ganglion cells and axons also expanded in vitro. [3H]Thymidine labeling showed extensive proliferation of the neuroepithelial cells including the formation of new ganglion cells. Culturing eyes from embryos before stage 17 results, as in vivo, in the generation of the first ganglion cells of the retina, but unlike in the in vivo situation, the outgrowing axons always formed a random fiber net in the central portion of the retina. A defined axonal pattern identical to the in vivo developed only in specimens from embryos of stage 17 and older. Some aberrant axons, however, were also observed at the retinal periphery in specimens from embryos of more advanced stages (20-24), but only during the second day of culturing. Axons in retinae from embryos of stages 23 to 26 heading toward the optic fissure often crossed the fissure and, in contrast to the situation in vivo, invaded the opposite retinal side. These axons of wrong polarity followed the pathways of axons growing centripetally but in reverse direction. This suggests that the polarity of growing nerve fibers and their course are determined by different factors. Culturing the eyes of embryos from stages 20 to 25 in the presence of antibodies showed that the antibodies penetrated the entire retina with 6 hr. Neither anti-N-CAM nor the T-61 antibody--both recognizing membrane proteins of retinal cells--affected the growth of the eyes in vitro. The development of the axonal pattern in vitro was not affected by incubation with N-CAM-antibodies at concentrations up to 500 micron/ml, whereas the T-61 antibody which is known to block neurite extention in vitro (S. Henke-Fahle, W. Reckhaus, and R. Babiel (l984). "Developmental Neuroscience: Physiological, Pharmacological, and Clinical Aspects," pp. 393-398. Elsevier, Amsterdam/New York) showed inhibition of axonal growth in retina cultures at 50 micron/ml. These results indicate that the eye cultures can be used as a test system for antibodies against antigens which could be involved in axon extension and neurite pathfinding in situ.

MeSH terms

  • Animals
  • Antibodies
  • Axons / cytology
  • Axons / growth & development*
  • Chick Embryo
  • Eye Proteins / immunology
  • Membrane Proteins / immunology
  • Mitosis
  • Organ Culture Techniques
  • Quail
  • Retina / embryology*
  • Retina / innervation

Substances

  • Antibodies
  • Eye Proteins
  • Membrane Proteins