ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis

Elife. 2024 Nov 21:13:RP96085. doi: 10.7554/eLife.96085.

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

Keywords: ACK1; BRK; genetic diseases; genetics; genomics; human; immunology; inflammation; mouse; systemic lupus.

MeSH terms

  • Adult
  • Animals
  • Autoantibodies / immunology
  • Disease Models, Animal
  • Efferocytosis
  • Female
  • Humans
  • Lupus Erythematosus, Systemic* / genetics
  • Macrophages* / metabolism
  • Male
  • Mice
  • Phagocytosis*
  • Protein-Tyrosine Kinases / genetics
  • Protein-Tyrosine Kinases / metabolism
  • c-Mer Tyrosine Kinase / genetics
  • c-Mer Tyrosine Kinase / metabolism

Substances

  • Protein-Tyrosine Kinases
  • c-Mer Tyrosine Kinase
  • Autoantibodies

Associated data

  • GEO/GSE118730