Inducible FAK Deletion but not FAK Inhibition in Endothelial Cells Activates p53 to Suppress Tumor Growth in PYK2-null Mice

bioRxiv [Preprint]. 2024 Nov 6:2024.11.04.622008. doi: 10.1101/2024.11.04.622008.

Abstract

Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 -/- FAK fl/fl mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 -/- background. Surprisingly, ∼90% of PYK2 -/- EC FAK -/- mice survived to 75 weeks of age. Syngeneic melanoma, breast, or lung carcinoma tumors did not grow in PYK2 -/- EC FAK -/- mice, but tumors grew normally in PYK2 -/- EC FAK fl/fl mice lacking Cre. This tumor inhibitory phenotype was associated with abortive EC vessel sprouting, enhanced EC p53 tumor suppressor and p21CIP1 (cyclin-dependent inhibitor 1) expression, and alterations in serum cytokine levels. To discern the role of FAK kinase versus scaffolding activity in ECs, we generated kinase defective (FAK K454R, KD) PYK2 -/- EC FAK fl/KD and PYK2 -/- EC FAK fl/WT (WT, wildtype) mice. Hemizygous EC FAK -/KD expression supported primary tumor growth but not metastasis, implicating EC FAK activity in tumor dissemination. In vitro , hemizygous expression of either WT or KD FAK suppressed EC p21CIP1 levels and cell death observed in primary PYK2 -/- EC FAK -/- ECs. Combined FAK and PYK2 knockdown in tumor cells also increased p21CIP1 and PARP1 (poly ADP-ribose polymerase 1) levels in a p53-associated manner impacting anchorage-independent growth. Together, these results underscore the linkage between PYK2 and FAK loss with p53 activation impacting tumor growth.

Impact statement: PYK2-null combined with endothelial cell-specific FAK transgenic mouse models show that loss of FAK activity limits tumor spread and that genetic or chemical degradation preventing combined FAK-PYK2 expression may be an approach to induce a p53-associated anti-tumor response.

Publication types

  • Preprint