Obstructive sleep apnea (OSA) is a multifactorial sleep disorder characterized by a strong genetic basis. Excessive daytime sleepiness (EDS) is a symptom that is reported by a subset of OSA patients, persisting even after treatment with continuous positive airway pressure (CPAP). It is recognized as a clinical subtype underlying OSA carrying alarming heightened cardiovascular risk. Thus, conceptualizing EDS as an exposure variable, we sought to investigate EDS's influence on genetic variation linked to apnea-hypopnea index (AHI), a diagnostic measure of OSA severity. This study serves as the first large-scale genome-wide gene x environment interaction analysis for AHI, investigating the interplay between its genetic markers and EDS across and within specific sex. Our work pools together whole genome sequencing data from seven cohorts, enabling a diverse dataset (four population backgrounds) of over 11,500 samples. Among the total 16 discovered genetic targets with interaction evidence with EDS, eight are previously unreported for OSA, including CCDC3, MARCHF1, and MED31 identified in all sexes; TMEM26, CPSF4L, and PI4K2B identified in males; and RAP1GAP and YY1 identified in females. We discuss connections to insulin resistance, thiamine deficiency, and resveratrol use that may be worthy of therapeutic consideration for excessively sleepy OSA patients.