Bacterial infections leading to implant failure pose a significant global health issue. Despite its antimicrobial properties, nanosilver is not commonly used in commercially available titanium implant coatings. This underutilization stems from an insufficient understanding of fundamental factors, such as particle size, coating, composition, and stability that dictate the antimicrobial performance of nanosilver coatings. A deeper understanding of these factors is crucial for designing effective nanosilver coatings to prevent biofilm formation on implants. Without this knowledge, nanosilver technology risks being merely a marketing tool rather than a functional component in medical devices. Another limiting factor is the potential cytotoxicity of nanosilver coatings, which necessitates a delicate balance between anti-biofilm activity and host tissue toxicity. Addressing these issues could involve the development of multifunctional coatings as well as the optimization of manufacturing processes with a specific focus on the durability of the coatings. Furthermore, to demonstrate the efficacy of these coatings, rigorous in vitro and in vivo assessments are required. As our understanding of the fundamental parameters of nanosilver coatings improves and we find ways to mitigate their toxicity, their utilization will be strengthened by clinicians and approved by regulatory agencies. The development of personalized implant coatings with well-defined nanosilver properties and multiple functionalities will further advance the field and address the challenge of implant failure.
Keywords: Antibacterial; Antimicrobial resistance; Medical devices; Silver nanoparticles.
© The Author(s) 2024.