Batch-to-batch variability in inhalation powder has been identified as a potential challenge in the development of generic versions. This study explored the impact of batch-to-batch variability on the probability of establishing pharmacokinetic (PK) bioequivalence (BE) in a two-sequence, two-period (2 × 2) crossover study. A model-based parametric simulation approach was employed, incorporating batch-to-batch variability through the relative bioavailability (RBA) ratio. In the absence of batch variability, recruiting a total of 48 subjects in a 2 × 2 crossover study with the reference formulation resulted in a 95% probability of concluding BE. However, this probability decreased to 80% with a 5% batch difference in RBA and further declined to 30% with a 10% batch difference. With a 10% batch difference, the required number of subjects to achieve an 80% probability of concluding BE increased to 84. When considering product differences between the reference and the test formulations, an additional 10% batch difference reduced the study power from 97% to 30% for a T/R bioavailability ratio of 100% in a 2 × 2 crossover study with 48 subjects. As a result, the substantial impact of batch-to-batch variability on the study power and type I error of the PK BE study may pose significant challenges for the development of generic Advair Diskus due to its degree of PK batch-to-batch variability. Therefore, alternative PK BE study designs and guidelines are needed to adequately address the influence of batch-to-batch variability in products like Advair Diskus.
© 2024 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.