Phenomenology of Many-Body Localization in Bond-Disordered Spin Chains

Phys Rev Lett. 2024 Nov 8;133(19):196302. doi: 10.1103/PhysRevLett.133.196302.

Abstract

Many-body localization (MBL) hinders the thermalization of quantum many-body systems in the presence of strong disorder. In this Letter, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain, finding the multimodal distribution of entanglement entropy in eigenstates, sub-Poissonian level statistics, and revealing a relation between operators and initial states required for examining the breakdown of thermalization in the time evolution of the system. We employ a real space renormalization group scheme to identify these phenomenological features of the MBL regime that extend beyond the standard picture of local integrals of motion relevant for systems with disorder coupled to on-site operators. Our results pave the way for experimental probing of MBL in bond-disordered spin chains.