How does p53 work? Regulation by the intrinsically disordered domains

Trends Biochem Sci. 2025 Jan;50(1):9-17. doi: 10.1016/j.tibs.2024.10.009. Epub 2024 Nov 21.

Abstract

Defects in the tumor suppressor protein p53 are found in the majority of cancers. The p53 protein (393 amino acids long) contains the folded DNA-binding domain (DBD) and tetramerization domain (TET), with the remainder of the sequence being intrinsically disordered. Since cancer-causing mutations occur primarily in the DBD, this has been the focus of most of the research on p53. However, recent reports show that the disordered N-terminal activation domain (NTAD) and C-terminal regulatory domain (CTD) function synergistically with the DBD to regulate p53 activity. We propose a mechanistic model in which intermolecular and intramolecular interactions of the disordered regions, modulated by post-translational modifications, perform a central role in the regulation and activation of p53 in response to cellular stress.

Keywords: DNA binding; DNA damage; intrinsically disordered domains; post-translational modifications; transcription factor.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Intrinsically Disordered Proteins* / chemistry
  • Intrinsically Disordered Proteins* / genetics
  • Intrinsically Disordered Proteins* / metabolism
  • Protein Domains
  • Protein Processing, Post-Translational
  • Tumor Suppressor Protein p53* / chemistry
  • Tumor Suppressor Protein p53* / genetics
  • Tumor Suppressor Protein p53* / metabolism

Substances

  • Tumor Suppressor Protein p53
  • Intrinsically Disordered Proteins