Skeletal muscle hypertrophy and enhanced mitochondrial bioenergetics following electrical stimulation exercises in spinal cord injury: a randomized clinical trial

Eur J Appl Physiol. 2024 Nov 22. doi: 10.1007/s00421-024-05661-6. Online ahead of print.

Abstract

We examined the combined effects of neuromuscular electrical stimulation-resistance training (NMES-RT) and functional electrical stimulation-lower extremity cycling (FES-LEC) compared to passive movement training (PMT) and FES-LEC on mitochondrial electron transport chain (ETC) complexes and citrate synthase (CS) in adults with SCI. Thirty-two participants with chronic SCI were randomized to 24 weeks of NMES-RT + FES [n = 16 (14 males and 2 females) with an age range of 20-54 years old] or PMT + FES [n = 16 (12 males and 4 females) with an age range of 21-61 years old]. The NMES-RT + FES group underwent 12 weeks of surface NMES-RT using ankle weights followed by an additional 12 weeks of FES-LEC. The PMT + FES performed 12 weeks of passive leg extension movements followed by an additional 12 weeks of FES-LEC. Using repeated measures design, muscle biopsies of the vastus lateralis were performed at baseline (BL), post-intervention 1 (P1) and post-intervention 2 (P2). Spectrophotometer was used to measure ETC complexes (I-III) and CS using aliquots of the homogenized muscle tissue. Magnetic resonance imaging was used to measure skeletal muscle CSAs. A time effect was noted on CS (P = 0.001) with an interaction between both groups (P = 0.01). 46% of the participants per group had zero activities of CI without any changes following both interventions. A time effect was noted in CII (P = 0.023) following both interventions. Finally, NMES-RT + FES increased CIII at P1 compared to BL (P = 0.023) without additional changes in P2 or following PMT + FES intervention. Skeletal muscle hypertrophy may potentially enhance mitochondrial bioenergetics after SCI. NMES-RT is likely to enhance the activities of complex III in sedentary persons with SCI. Clinical trials # NCT02660073.

Keywords: Citrate synthase; Electron transport chain; Functional electrical stimulation; Mitochondrial complexes; Neuromuscular electrical stimulation; Resistance training; Spinal cord injury.

Associated data

  • ClinicalTrials.gov/NCT02660073