Optimizing nitrogen management for pollution control in Lake Baiyangdian following water replenishment

J Environ Manage. 2024 Dec:372:123374. doi: 10.1016/j.jenvman.2024.123374. Epub 2024 Nov 24.

Abstract

Eutrophication is an ecological process showing the state shift of a lake. This shift could be triggered when the external nitrogen (N) loads exceed N thresholds. Meanwhile, external water inputs and the resulting changes in lake water depth could affect N thresholds. Thus, the shift towards eutrophication may occur more quickly when the N thresholds decrease. Lake Baiyangdian is located in the North China Plain and plays an essential role in ecosystem service provision. However, this lake may have seen a decrease in the N threshold decrease due to frequent water replenishment since 2015. In this study, we compared the external N loads to Lake Baiyangdian with the N thresholds from 2012 to 2017. For this, we considered the effects of water replenishment by linking the MARINA-Lakes and the PCLake + models. Then, we assessed how N thresholds could be met by external N loads from sub-basins of Lake Baiyangdian under 2017 and different N management cases, including improved crop yield and efficiency (S1), improved sewage treatment (S2), improved manure management (S3), and combined options (S4). Results indicate that a 45% reduction in river export of N to Lake Baiyangdian was found from 2012 to 2017. Agricultural sources (fertilizer and manure) accounted for 59% of river exports of N in 2017. River N exports to the lake are projected to be reduced by 13-67% under the four cases. In 2017, the N-load response curve exhibited hysteresis with a 56-87% decrease in N thresholds compared to 2012. Measures in S4 can help to reduce external N exports to Lake Baiyangdian below the N thresholds. Our study emphasizes the importance of combined N management strategies to mitigate the eutrophication risk of the lake. These results offer valuable insights for N management in lake basins experiencing increasing water depth resulting from water replenishment.

Keywords: Baiyangdian; Basin N management; Nitrogen threshold; Water replenishment.

MeSH terms

  • China
  • Ecosystem
  • Environmental Monitoring
  • Eutrophication*
  • Lakes*
  • Nitrogen* / analysis
  • Rivers
  • Water Pollutants, Chemical / analysis

Substances

  • Nitrogen
  • Water Pollutants, Chemical