The coordination of neuronal wiring and activity within the central nervous system (CNS) is crucial for cognitive function, particularly in the context of aging and neurological disorders. Neurogranin (Ng), an abundant forebrain protein, modulates calmodulin (CaM) activity and deeply influences synaptic plasticity and neuronal processing. This study investigates the regulatory mechanisms of Ng expression, a critical but underexplored area for combating cognitive impairment. Utilizing both in vitro and in vivo hippocampal models, we show that Ng expression arises during late developmental stages, coinciding with the processes of synaptic maturation and neuronal circuit consolidation. We observed that Ng expression increases in neuronal networks with heightened synaptic activity and identified GluN2B-containing N-methyl-D-aspartate (NMDA) receptors as key drivers of this expression. Additionally, we discovered that nuclear-localized HDAC4 inhibits Ng expression, establishing a regulatory axis that is counteracted by NMDA receptor stimulation. Analysis of the Ng gene promoter activity revealed regulatory elements between the - 2.4 and - 0.85 Kbp region, including a binding site for RE1-Silencing Transcription factor (REST), which may mediate HDAC4's repressive effect on Ng expression. Further analysis of the promoter sequence revealed conserved binding sites for the myocyte enhancer factor-2 (MEF2) transcription factor, a target of HDAC4-mediated transcription regulation. Our findings elucidate the interplay between synaptic activity, NMDAR function, and transcriptional regulation in controlling Ng expression, offering insights into synaptic plasticity mechanisms and potential therapeutic strategies to prevent cognitive dysfunction.
Keywords: Calmodulin; HDAC4; Hippocampal neurons; NMDA receptors; Neurogranin; Synaptic plasticity.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.