Linking Phosphoinositides to Proteins: A Novel Signaling PIPeline

J Cell Signal. 2024;5(3):114-121. doi: 10.33696/signaling.5.118.

Abstract

Phosphoinositide (PIPn) signaling plays pivotal roles in myriad biological processes and is altered in many diseases including cancer. Canonical PIPn signaling involves membrane-associated PIPn lipid second messengers that modulate protein recruitment and activity at membrane focal points. In the nucleus, PIPn signaling operates separately from membranous compartments defining the paradigm of non-canonical PIPn signaling. However, the mechanisms by which this non-membranous nuclear PIPn pool is established and mediates stress signaling is poorly understood. The recent discovery of a p53-signalosome by Chen et al. (Nature Cell Biology 2022) represents a new PIPn signaling axis that operates independently from membrane structures where PIPns are dynamically linked to nuclear p53 and modified by PIPn kinases and phosphatases, allowing the activation of a nuclear PI 3-kinase/Akt pathway that is entirely distinct from the canonical membrane-localized pathway. Here, we will discuss emerging insights about the non-canonical PIPn pathway, which links PIPns to a growing number of cellular targets and highlight the similarities/differences with its canonical counterpart. We will also discuss potential therapeutic targets in this non-canonical PIPn pathway, which is likely to be deregulated in many diseases.

Keywords: PI3K; PIPn linked proteins; Phosphoinositide; cancer; nucleus; signalosome.