Development of a straightforward direct injection UHPLC-MS/MS method for quantification of plastic additive chemicals in roadside retention ponds

Anal Bioanal Chem. 2024 Nov 25. doi: 10.1007/s00216-024-05657-3. Online ahead of print.

Abstract

There is growing interest in road pollution that enters surface waters. Additive chemicals used in the manufacture of plastics, including tyre rubber, are mobile pollutants that pose a threat to aquatic life. Therefore, an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed to measure 25 plastic additive chemicals in road runoff and water of retention ponds used to manage road runoff. A straightforward direct injection methodology was adopted to minimise sample handling and risk of contamination. Using this approach, the method quantitation limits (MQLs) ranged from 4.3 × 10-3 to 13 µg/L. These were adequate to determine most chemicals at or below their freshwater predicted no-effect concentration (PNEC). Method trueness ranged from 18 to 148% with most chemicals being within 80-120%. The method was applied to water from four retention ponds in series to measure additive chemicals entering the ponds (i.e., in road runoff) and passing through each pond. Greatest concentrations were observed in road runoff during heavy rainfall following dry weather. Here, 1,3-diphenylguanidine (DPG) exceeded its current PNEC of 1.05 µg/L. Notably, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) was determined at 0.13 µg/L which is greater than its lowest acute toxicity threshold (0.095 µg/L). Similarity in additive chemical concentrations throughout the retention ponds during steady flow suggests little or no removal occurs. However, further studies are needed to assess the fate and removal of plastic additive chemicals in retention ponds and the risk posed to aquatic environments. Such research can be facilitated by this newly developed UHPLC-MS/MS method.

Keywords: HMMM; Microplastic; Sustainable drainage system; TRWP; Tyre; Vulcanisation.