T cells are indispensable for the therapeutic efficacy of cancer immunotherapies, including immune checkpoint blockade. However, prolonged antigen exposure also drives T cells into exhaustion, which is characterized by upregulated inhibitory molecules, impaired effector functions, reduced cytotoxicity, altered metabolism, etc. Noninvasive monitoring of T cell exhaustion allows a timely identification of cancer patients that are most likely to benefit from immunotherapies. In this Review, we briefly explain the biological cascades underlying the modulation of inhibitory molecules, present a concise update on the nuclear molecular imaging tracers of T cell exhaustion, and then discuss the potential opportunities for future development.
Keywords: PET/CT; SPECT/CT; T cell exhaustion; molecular imaging; nuclear medicine.