The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status. Furthermore, the relationships between the above factors and tolerances may differ among geographically distinct populations. Here, the effects of age and mating status on thermal tolerance of three geographically distinct medfly populations along a latitudinal gradient ranging from Greece (Crete & Volos) to Croatia (Dubrovnik) were examined. The upper and lower critical thermal limits (scored as loss of neuromuscular function during controlled cooling or heating) of adult males and females (a) at 1-, 6-, 15-, and 35 days old and of (b) both mated and virgin flies were assessed. Results showed that estimates of lower and upper thermal limits (CTmin and CTmax) were both population- and age-dependent. In most age classes tested, CTmin values were lower for the adults obtained from Crete and higher for those from Dubrovnik. CTmax values were lower for the females from Dubrovnik compared to the females from any other population on day one after emergence but not on days 6, 15 and 35. Differences among populations were observed across different age classes both for cold and heat tolerance but mostly in CTmin estimates. Mating status had a little effect on cold and heat tolerance. Complex patterns of thermal limit variation within and among populations suggest a suite of factors determine population-level mortality from thermal extremes under field conditions in medfly. These results contribute towards understanding the invasion dynamics of medfly and its range expansion to northern, more temperate regions of Europe.
Keywords: Ageing; Cold/heat tolerance; Invasion; Populations; Tephritidae; Thermal biology.
Copyright © 2024 Elsevier Ltd. All rights reserved.