Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity

Biomed Mater. 2024 Dec 12;20(1). doi: 10.1088/1748-605X/ad971e.

Abstract

Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers (NFs), with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric NFs based on magnetoelectric core-shell nanostructures. The scanning electron microscopy, transmission electron microscopy, x-ray diffraction and Vibrating sample magnetometer analysis confirmed the successful loading of nanostructures on polymeric NF, the core-shell morphology and magnetoelectric phase of CFO@BTO, respectively. UV-Vis spectroscopy was applied to verify the drug attachment, the optimization of drug release in an applied external magnetic field (MF), and the time required for control drug release. The effectiveness of MF-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric NFs (MENFs) within 30 min under a MF of 4 mT.In vitrocytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2 ± 0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.

Keywords: anticancer; core–shell; drug delivery; electrospinning; magnetoelectric; nanofibers.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Barium Compounds / chemistry
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cobalt* / chemistry
  • Doxorubicin* / chemistry
  • Doxorubicin* / pharmacology
  • Drug Carriers / chemistry
  • Drug Delivery Systems
  • Drug Liberation
  • Ferric Compounds* / chemistry
  • Hemolysis / drug effects
  • Humans
  • Magnetic Fields
  • Microscopy, Electron, Scanning
  • Nanofibers* / chemistry
  • Titanium* / chemistry
  • X-Ray Diffraction

Substances

  • Cobalt
  • Doxorubicin
  • Ferric Compounds
  • Titanium
  • cobalt ferrite
  • Antineoplastic Agents
  • Barium Compounds
  • barium titanate(IV)
  • ferrite
  • Drug Carriers