Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System

Physiol Res. 2024 Nov 29;73(S2):S493-S510. doi: 10.33549/physiolres.935431.

Abstract

Hypoxic pulmonary vasoconstriction (HPV) rapidly and reversibly matches lung ventilation (V) and perfusion (Q), optimizing oxygen uptake and systemic oxygen delivery. HPV occurs in small pulmonary arteries (PA), which uniquely constrict to hypoxia. Although HPV is modulated by the endothelium the core mechanism of HPV resides in PA smooth muscle cells (PASMC). The PASMC's mitochondrial oxygen sensor lies within the electron transport chain (ETC) and includes NDUFS2 in ETC Complex-I. PASMC mitochondria respond to hypoxia by varying production of reactive oxygen species (ROS) and hydrogen peroxide in proportion to alveolar oxygen tension. Hypoxic ROS inhibition results in a state of reduction which triggers a redox-mediated inhibition of oxygen-sensitive, voltage-gated, potassium channels, including Kv1.5 and Kv2.1. Kv channel inhibition depolarizes the PASMC, opening of large-conductance calcium channels (CaL), elevating cytosolic calcium and activating the contractile apparatus. HPV is strongest in small PAs where sensors (hypoxia-responsive mitochondria) and effectors (oxygen-sensitive K+ channels) are enriched. Oxygenation at birth reverses fetal HPV, contributing to the rapid neonatal drop in pulmonary vascular resistance (PVR). A similar mitochon-drial-K+ channel sensor-effector mechanism exists in the ductus arteriosus (DA), however in DASMC it is oxygen-induced increases in mitochondrial ROS that inhibit DASMC K+ channels, causing DA constriction. Atelectasis and pneumonia elicit HPV, which optimises V/Q matching, increasing systemic oxygenation. Whilst HPV in response to localized hypoxia in a single lung lobe does not increase PA pressure; global airway hypoxia, as occurs with altitude or sleep apnea, causes pulmonary hypertension. HPV can be inhibited by drugs, including calcium channel blockers, or used to maintain a dry operative field during single lung anesthesia for lung surgery. HPV does not normally cause lung edema but excessive, heterogenous HPV contributes to high altitude pulmonary edema. HPV is suppressed in COVID-19 pneumonia by a SARS-CoV-2 mitochondriopathy. HPV is a component of the body's homeostatic oxygen sensing system. Keywords: Ductus arteriosus, Redox, NDUFS2, Oxygen sensitive potassium, Channels, High altitude pulmonary edema (HAPE), Mitochondrial electron transport chain, COVID-19 pneumonia, Atelectasis.

Publication types

  • Review

MeSH terms

  • Animals
  • COVID-19 / complications
  • COVID-19 / metabolism
  • Homeostasis* / physiology
  • Humans
  • Hypoxia* / metabolism
  • Hypoxia* / physiopathology
  • Oxygen* / metabolism
  • Pulmonary Artery / metabolism
  • Vasoconstriction* / physiology

Substances

  • Oxygen