Self-Exfoliated Guanidinium Covalent Organic Nanosheets as High-Capacity Curcumin Carrier

Biomimetics (Basel). 2024 Nov 19;9(11):709. doi: 10.3390/biomimetics9110709.

Abstract

Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing novel drug carriers to enhance drug efficacy. Guanidinium Covalent Organic Nanosheets (gCONs) offer promising alternatives due to their high porosity, surface area, loading capacity, and ability to provide controlled, sustained, and target-specific drug delivery. Herein, we successfully synthesized self-exfoliated gCONs using a Schiff base condensation reaction and embedded curcumin (CUR), a polyphenolic pleiotropic drug with antioxidant and anti-inflammatory properties, via the wet impregnation method. The BET porosimeter exhibited the filling of gCON pores with CUR. Morphological investigations revealed the formation of sheet-like structures in gCON. Culturing human dermal fibroblasts (hDFs) on gCON demonstrated cytocompatibility even at a concentration as high as 1000 µg/mL. Drug release studies demonstrated a controlled and sustained release of CUR over an extended period of 5 days, facilitated by the high loading capacity of gCON. Furthermore, the inherent antioxidant and anti-inflammatory properties of CUR were preserved after loading into the gCON, underscoring the potential of CUR-loaded gCON formulation for effective therapeutic applications. Conclusively, this study provides fundamental information relevant to the performance of gCONs as a drug delivery system and the synergistic effect of CUR and CONs addressing issues like drug bioavailability and instability.

Keywords: bioavailability; curcumin; drug carrier; guanidinium covalent organic nanosheets; self-exfoliation.

Grants and funding

This study was supported by the National Institutes of Health (NIH) (R01HL146652 and R15CA202656) and the National Science Foundation (NSF) (1703570, 2106048) to F.Z.