Tissue engineering, a multidisciplinary research field aiming to revolutionize regenerative medicine, relies on scaffolds for optimal cell cultures and organ development. Decellularized tissue extracellular matrices (dECM) scaffolds, particularly from human amniotic membrane (hAM), show promise in clinical applications. This review discusses the significance of scaffolds, emphasizing dECM-based hAM scaffolds, delving into ECM complexities, decellularization processes, and evaluation methods. Raman spectroscopy emerges as a non-destructive tool for evaluating ECM preservation, presenting potential for quantifying ECM components in hAM before and after decellularization. The review explores the role of hAM as a biomaterial, detailing its composition and characteristics and emphasizes the importance of evaluating ultrastructural components and suggests Raman spectroscopy as a valuable technique for this purpose.
Keywords: Biomaterials; Decellularized extracellular matrices; Human amniotic membrane; Raman spectroscopy; Tissue engineering.
Copyright © 2024 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.