The surface resuspended dust (SRD) that accumulates trace toxic elements (TTEs) can be suspended in the atmosphere and can be transported to other areas, such as campuses, through airflow. The risks and sources of TTEs in university campus SRD have not been thoroughly explored, especially the priority factors for TTEs pollution and risk control in the SRD. Taking Xi'an as a case, this study quantitatively apportioned the sources of TTEs in the SRD of university campuses using positive matrix factorization method, evaluated the ecological and health risks of the specific-source TTEs in the SRD using Monte Carlo simulation method, and determined the priority factors for risk control of TTEs in the SRD. We found that the pollution of Zn, Pb, and Cu in the SRD was severe, with significantly high to very high enrichment levels. The comprehensive pollution of TTEs in the SRD was high to extremely high levels, with Pb and Zn as the main contributors. The four sources of TTEs identified in the SRD were traffic exhaust, traffic non-exhaust, mixed, and natural sources, accounting for 19.1%, 43.3%, 11.2%, and 26.3% of the total TTE concentrations, respectively. The ecological risk of TTEs was quite serious, mainly caused by traffic exhaust Pb. TTEs in the SRD had a certain cancer risk to college students, mainly contributed by traffic exhaust. Traffic exhaust source is the main factor that needs to be controlled.
Keywords: Dust; Monte Carlo simulation; Positive matrix factorization; Priority factor; Risk assessment; Trace toxic elements.
© 2024. The Author(s).