Enhancing Survival Outcome Predictions in Metastatic Non-Small Cell Lung Cancer Through PET Radiomics Analysis

Cancers (Basel). 2024 Nov 5;16(22):3731. doi: 10.3390/cancers16223731.

Abstract

(1) Background: Advanced-stage lung cancer poses significant management challenges. The goal of this study was to identify crucial clinical and PET radiomics features that enable prognostic stratification for predicting outcomes. (2) Methods: PET radiomics features of the primary lung lesions were extracted from 99 patients with stage IVB NSCLC, and the robustness of these PET radiomics features was evaluated against uncertainties stemming from extraction parameters and contour variation. We trained three survival risk models (clinical, radiomics, and a composite) through a penalized Cox model framework. We also created a Balanced Random Forest classification predictive model, using the selected features, to predict 1-year survival. (3) Results: We identified 367 common PET radiomics features that exhibited robustness to perturbations introduced by contour variation and extraction parameters. Our findings indicated that both the radiomics and the composite model outperformed the clinical model in stratifying the risk for survival with statistical significance. In predicting 1-year survival, the radiomics model and the composite model also achieved better predicting accuracies compared to the clinical model. (4) Conclusions: Robust PET radiomics analysis successfully facilitated the stratification of patient risk for survival outcomes and predicted 1-year survival in stage IVB NSCLC.

Keywords: non-small cell lung cancer (NSCLC); positron emission tomography; radiomics.