Targeting Menin in Acute Myeloid Leukemia: Therapeutic Advances and Future Directions

Cancers (Basel). 2024 Nov 6;16(22):3743. doi: 10.3390/cancers16223743.

Abstract

Germline mutations in the MEN1 gene encoding menin protein cause multiple endocrine neoplasia type 1 (MEN1) syndrome. Recent evidence suggests that inhibiting the interaction of menin with its crucial oncogenic protein partners represents a promising therapeutic strategy to AML. Menin plays a critical role in lysine methyltransferase 2A (KMT2A)-gene-rearranged and NPM1-m acute leukemias, both associated with adverse outcomes with current standard therapies, especially in the relapsed/refractory setting. Disrupting the menin-KMT2A interaction affects the proleukemogenic HOX/MEIS transcription program. This disruption leads to the differentiation of KMT2Ar and NPM1-m AML cells. Small molecular inhibitors of the menin-KMT2A interaction target the central cavity of MEN1 to inhibit the MEN1-KMT2A interaction and could target a similar transcriptional dependency in other leukemia subsets, broadening their therapeutic potential. These agents, both as monotherapies and in combination with synergistic drugs, are undergoing preclinical and clinical evaluation with promising early results. With the growing literature around menin inhibitors in AML, we discussed the biology of menin, its mechanism of action, its interacting partners in leukemia, possible inhibitors, their implications, synergistic drugs, and future therapeutic strategies in this review.

Keywords: KMT2A; MLL; NPM1; acute myeloid leukemia (AML); epigenetics; fusion proteins; menin; targeted therapy.

Publication types

  • Review

Grants and funding

NCI 5P30CA012197-49.