There are several types of microvasculature supplying neoplasms: "newly formed blood vessels" (neoangiogenesis), which are a component of the tumor microenvironment (TME) of invasive carcinoma with wound healing-like reaction; and "pre-existing blood vessels", which are used as tumor-supplying vessels by neoplasms (co-option vessels) and are likely to develop in hypervascularized organs. We herein review the microvasculature of neoplasms of biliary tract with reference to pre-existing vessels and vessel co-options. In the hepatobiliary system, intrahepatic large and extrahepatic bile ducts (large bile ducts) and the gallbladder as well as hepatic lobules are highly vascularized regions. In large bile ducts, the biliary lining epithelia and underlining capillaries (peribiliary capillary plexus [PCP]) form the biliary epithelia-PCP alignment, whereas the hepatocyte-sinusoid alignment composes hepatic lobules. Cholangiocarcinoma (CCA) and gallbladder carcinoma (GBC) are the main biliary tract carcinomas. CCA is subdivided into distal (d/CCA), perihilar (pCCA), and intrahepatic (iCCA), and iCCA is subdivided into small duct type (SD-iCCA) and large duct type (LD-iCCA). High-grade biliary intraepithelial neoplasm (BilIN), intraductal papillary neoplasm of the bile duct (IPNB), pyloric gland adenoma (PGA), and intracholecystic papillary neoplasm (ICPN) have recently been proposed as the precursors of LD-iCCA, p/dCCA, and GBC. In the large bile ducts and gallbladder, all cases of high-grade BilIN and PGA, about half of IPNB, and one-third of ICPN with less-complicated structure were found to have hijacked the PCP as their supporting vessels (vessel co-option), while p/dCCA, LD-iCCA, and GBC were supplied by neo-angiogenetic vessels associated with fibrous stroma. The intraluminal components of the remaining cases of ICPN and IPNB with complicated structure presented sparse capillaries without fibrous stroma, a unique microvasculature different from that of co-option or neoangiogenesis. Regarding iCCA showing invasion into the hepatic lobules, some SD-iCCAs replaced hepatocytic cords and used pre-existing sinusoids as co-opted vessels. Visualization of pre-existing vessels could be a new pathological tool for the evaluation of malignant progression and of vascular supply in CCAs and its precursors.
Keywords: biliary tract; carcinoma and precursors; invasion; neoangiogenesis; structure–function relationship; vessel co-option.