Biocomposite Scaffolds for Tissue Engineering: Materials, Fabrication Techniques and Future Directions

Materials (Basel). 2024 Nov 15;17(22):5577. doi: 10.3390/ma17225577.

Abstract

Tissue engineering is an interdisciplinary field that combines materials, methods, and biological molecules to engineer newly formed tissues to replace or restore functional organs. Biomaterials-based scaffolds play a crucial role in developing new tissue by interacting with human cells. Tissue engineering scaffolds with ideal characteristics, namely, nontoxicity, biodegradability, and appropriate mechanical and surface properties, are vital for tissue regeneration applications. However, current biocomposite scaffolds face significant limitations, particularly in achieving structural durability, controlled degradation rates, and effective cellular integration. These qualities are essential for maintaining long-term functionality in vivo. Although commonly utilized biomaterials can provide physical and chemical properties needed for tissue regeneration, inadequate biomimetic properties, as well as insufficient interactions of cells-scaffolds interaction, still need to be improved for the application of tissue engineering in vivo. It is impossible to achieve some essential features using a single material, so combining two or more materials may accomplish the requirements. In order to achieve a proper scaffold design, a suitable fabrication technique and combination of biomaterials with controlled micro or nanostructures are needed to achieve the proper biological responses. This review emphasizes advancements in scaffold durability, biocompatibility, and cellular responsiveness. It focuses on natural and synthetic polymer combinations and innovative fabrication techniques. Developing stimulus-responsive 3D scaffolds is critical, as these scaffolds enhance cell adhesion and promote functional tissue formation while maintaining structural integrity over time. This review also highlights the natural polymers, smart materials, and recent advanced techniques currently used to create emerging scaffolds for tissue regeneration applications.

Keywords: applications; biopolymers; chitosan; collagen; fabrication; gelatin; lyophilization; pectin; techniques; tissue engineering.

Publication types

  • Review

Grants and funding

This research received no external funding.