Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces

Microorganisms. 2024 Oct 23;12(11):2124. doi: 10.3390/microorganisms12112124.

Abstract

Campylobacter spp. are prevalent foodborne bacterial enteric pathogens. Their inclusion in biofilms on abiotic surfaces is considered a strategy that facilitates their extraintestinal survival. Organic acid (OA) treatments could be used in a green approach to decontaminate various surfaces. This work aimed to evaluate the inhibitory and eradicative effects of L(+)-lactic acid (LA), a naturally occurring OA, on a dual-species biofilm formed on two food processing model surfaces (polystyrene and stainless steel) by three selected foodborne Campylobacter spp. isolates (two C. jejuni and one C. coli). The influence of aerobiosis conditions (microaerophilic, aerobic and CO2 enriched) on the resistance of the established biofilms to the acid was also tested. In parallel, the predominant metabolites contained in the planktonic media of biofilm monocultures and mixed-culture biofilm were comparatively analyzed by an untargeted metabolomics approach. Results revealed that LA inhibited mixed-culture biofilm formation by more than 2 logs (>99%) on both surfaces when this was applied at its highest tested concentration (4096 μg/mL; 0.34% v/v). However, all the preformed mixed-culture biofilms (ca. 106-7 CFU/cm2) could not be eradicated even when the acid was used at concentrations exceeding 5% v/v, denoting their extremely high recalcitrance which was still influenced by the abiotic substratum, and the biofilm-forming aerobiosis conditions. The metabolic analysis revealed a strain-specific metabolite production which might also be related to the strain-specific biofilm-forming and resistance behaviors and resulted in the distinct clustering of the different samples. Overall, the current findings provide important information on the effectiveness of LA against biofilm campylobacteria and may assist in mitigating their risk in the food chain.

Keywords: Campylobacter; aerobiosis conditions; disinfection; food safety; mixed-culture biofilms; natural antimicrobials; polystyrene; public health; stainless steel; untargeted metabolomics.