Enhanced Ocular Drug Delivery of Dexamethasone Using a Chitosan-Coated Soluplus®-Based Mixed Micellar System

Pharmaceutics. 2024 Oct 29;16(11):1390. doi: 10.3390/pharmaceutics16111390.

Abstract

Background: This study introduces a novel dexamethasone (DEX) mixed micellar system (DEX-MM) using Soluplus® and Pluronic F-127 (PF127) to enhance ocular drug delivery. The enhancement of ocular application properties was achieved by creating a chitosan-coated DEX-MM (DEX-CMM), which promotes better adherence to the ocular surface, thereby improving drug absorption.

Methods: Using the solvent evaporation method, a formulation was developed with a Soluplus®-to-drug ratio of 1:10, enhanced with 0.25% PF127. After dispersing in water, 1% chitosan (CS) was added. The stability and integrity of DEX within the micelles were verified using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). Additionally, in vitro and ex vivo drug release studies were conducted.

Results: DEX-CMM (F6) demonstrated a particle size of 151.9 ± 1 nm and a polydispersity index (PDI) of 0.168 ± 0.003, suggesting uniformity and high electrostatic stability with a zeta potential of +35.96 ± 2.13 mV. The non-Fickian drug release mechanism indicated prolonged drug retention. Comparative analyses showed DEX-CMM outperforming a standard DEX suspension in drug release and ocular tissue permeation, with flux measurements significantly higher than the DEX suspension.

Conclusion: The study confirmed the efficacy of DEX-CMM in enhancing drug delivery to ocular tissues, evidenced by improved permeability. Safety evaluations using the HET-CAM test demonstrated that DEX-CMM was non-irritant, supporting its potential for effective ocular drug delivery.

Keywords: chitosan coat; dexamethasone; mixed micelle; pluronic F-127; soluplus®.

Grants and funding