HIV-1 subtypes have distinct geographical distributions, with subtypes A, C, and D and inter-subtype recombinants circulating in sub-Saharan Africa. Historically, individuals living with subtype A viruses exhibit slower CD4 decline and progression to AIDS diagnosis. Despite this, there are few authentic infectious molecular clones (IMCs) of subtype A or AC recombinant transmitted founder (TF) viruses with which to investigate viral impacts on pathogenesis. In this study, we constructed 16 authentic subtype A1 and 4 A1C recombinant IMCs from the IAVI Rwandan Protocol C acute infection cohort and characterized these viruses phenotypically. The virus replicative capacity (RC) scores varied over 50-fold, but the natural substitution of non-consensus amino acids in the p17(MA) domain of Gag was generally linked to higher RC levels. Sensitivity to a panel of broadly neutralizing antibodies (bNAbs) showed that all but one TF was sensitive to N6, which targets the CD4 binding site, while bNAbs PG16 and PGT 128 had a similar level of potency but reduced breadth against our panel of viruses. In contrast, bNAb 10E8V4 revealed high breadth but much lower potency. This panel of well-characterized, authentic subtype A and AC recombinant IMCs provides a resource for studies on the role of the virus subtype in HIV-1 transmission, pathogenesis, and vaccine design.
Keywords: IMC; bNAb potency and breadth; co-receptor usage; infectious molecular clone; virus replicative capacity.