To address the concurrent needs of the personal care industry for simultaneous protection of active ingredients and enhancement of product functionality, this study employs a microfluidic technique to fabricate EstoGel M-based oleogel microcapsules capable of coencapsulating both hydrophilic and hydrophobic actives. The oleogels exhibit gel-like characteristics with a melting point of approximately 70 °C, ensuring high encapsulation efficiency for hydrophilic and hydrophobic actives within aqueous environments. The oleogel microspheres encapsulating hydrophobic actives are prepared using microfluidic technology with robust elasticity, which can be ruptured by a force of less than 15 mN, contributing to a favorable tactile sensation upon application. The structural integrity of these microspheres is preserved within a temperature range up to 70 °C, indicating their thermodynamic stability. In addition, oleogel microcapsules are prepared using microfluidic technology, and their effectiveness in coencapsulating hydrophilic and hydrophobic active ingredients is successfully demonstrated, along with excellent skin feel and temperature stability. The exceptional tactile properties of EstoGel M-based oleogel microcapsules offer a promising strategy for creating innovative personal care products that integrate high encapsulation efficiency with multifunctional attributes.
Keywords: coencapsulation; microcapsule; microfluidic; oleogel; personal care.