Background: Pulmonary neuroendocrine cells (PNEC) are rare airway epithelial cells that have recently gained attention as potential amplifiers of allergic asthma. However, studying PNEC function in humans has been challenging due to a lack of cell isolation methods, and little is known about human PNEC function in response to asthma-relevant stimuli. Here we developed and characterized an in vitro human PNEC model and investigated the neuroendocrine response to extracts of the common aeroallergen house dust mite (HDM).
Methods: PNEC-enriched cultures were generated from human induced pluripotent stem cells (iPNEC) and primary bronchial epithelial cells (ePNEC). Characterized PNEC cultures were exposed to HDM extract, a volatile chemical odorant (Bergamot oil), or the bacterial membrane component, lipopolysaccharide (LPS), and neuroendocrine gene expression and neuropeptide release determined.
Results: Both iPNEC and ePNEC models demonstrated similar baseline neuroendocrine characteristics and a stimuli-specific modulation of gene expression. Most notably, exposure to HDM but not Bergamot oil or LPS, leads to dose-dependent induction of the CGRP encoding gene, CALCB, and corresponding release of the neuropeptide. HDM-induced CALCB expression and CGRP release could be inhibited by a protease-activated receptor 1 (PAR1) antagonist or protease inhibitors and was mimicked by a PAR1 agonist.
Conclusions: We have characterized a novel model of PNEC-enriched human airway epithelium and utilized this model to demonstrate a previously unrecognized role for human PNEC in mediating a direct neuroendocrine response to aeroallergen exposure.
Keywords: CGRP; allergic asthma; house dust mite; neurotransmitters; pulmonary neuroendocrine cells.
© 2024 The Author(s). Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.