Acetyl coenzyme A (acetyl-CoA), a versatile central metabolite, plays a critical role in various metabolic processes and protein acetylation. While its impact on tumor cell properties is well established, the connection between acetyl-CoA metabolism and immune evasion in tumors remains unclear. Here, we uncover a mechanism by which nucleo-cytosolic acetyl-CoA contributes to immune evasion through regulation of programmed death ligand 1 (PD-L1). Specifically, bioinformatics analysis reveals a negative correlation between acetyl-CoA metabolism and anti-tumor immunity across multiple cancers. Inhibition of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) leads to a re-invigoration of cytotoxic T cells and enhances the efficacy of immunotherapy. Mechanistically, nucleo-cytosolic acetyl-CoA promotes PD-L1 transcription via P300-dependent histone H3K27 acetylation at the promoter region of CD274. The ACLY-H3K27ac-PD-L1 axis is verified in clinical specimens and predicts poor immunotherapy response. Our findings suggest that targeting acetyl-CoA metabolism may act as a promising strategy to overcome immune evasion and improve the outcomes of cancer immunotherapy.
Keywords: ACLY; Acetyl-CoA; CP: Cancer; PD-L1; histone acetylation; immune evasion; melanoma; metabolism.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.