Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.
Keywords: cosmetic powder; inhalation exposure; microplastics; organic UV filters; parabens; particulate matter.