High-energy tibial plateau fracture is complex and hard to treat, with functional sequelae and frequent soft-tissue lesions. Several classifications, strategies, approaches and fixation techniques have been reported. High-energy trauma is defined by high-velocity impact: fall from height, high-speed road or sport accident, firearm injury, etc. Description should include all components, and notably posterior components (on the "3 column" theory), for integral management. A sequential strategy, with temporary fixation, imaging assessment and then definitive fixation, seems mandatory, controlling cutaneous and infectious risks. Long-term results suffer from serious functional sequelae and progression toward osteoarthritis, with a rate of at least 5% secondary knee arthroplasty. The present review addresses 6 questions: These fractures should ideally be described according to mechanism and to the involvement of the various columns or quadrants (medial/lateral, anterior/posterior) on the modified Schatzker classification. Immediate management comprises systematic neurovascular and soft-tissue assessment. For such high-energy fractures, a sequential "scan-span-plan" strategy with temporary external fixation is indicated. Definitive treatment consists in internal fixation by plate, with reduction and fixation of the various bone lesions, and especially fixation of posterior lesions. The surgical approach should be adapted to the fracture. Arthroscopy can be useful for controlling reduction and treating any meniscal and/or ligament lesions and fractures showing little or no displacement. A strategy that avoids acute complications provides satisfactory medium-to-long-term results if definitive treatment objectives are achieved. Despite a fairly low rate of 5% conversion to total knee replacement, progression often shows impaired quality of life and of activities. LEVEL OF EVIDENCE: V; expert opinion.
Keywords: Proximal tibial fracture; Schatzker; Tibial plateau fracture.
Copyright © 2024. Published by Elsevier Masson SAS.