Coral reefs are experiencing decreases in coral cover due to anthropogenic influences. Coral restoration is addressing this decline by outplanting large volumes of corals onto reef systems. Understanding how outplanted corals react at a transcriptomic level to different outplant locations over time is important, as it will highlight how habitat affects the coral host and influences physiological measures. In this study, the transcriptomic dynamics of four genets of outplanted Acropora palmata were assessed over a year at three reef sites in the Florida Keys. Genet identity was more important than time of sampling or outplant site, with differing levels of baseline immune and protein production the key drivers. Once accounting for genet, enriched growth processes were identified in the winter, and increased survival and immune expression were found in the summer. The effect of the reef site was small, with hypothesized differences in autotrophic versus heterotrophic dependent on outplant depth. We hypothesize that genotype identity is an important consideration for reef restoration, as differing baseline gene expression could play a role in survivorship and growth. Additionally, outplanting during cooler winter months may be beneficial due to higher expression of growth processes, allowing establishment of outplants on the reef system.
Keywords: Acropora palmata; Coral restoration; Florida keys; Immune gene expression; RNA-seq.
© 2024. The Author(s).