Macrophages are critical effectors of antibody therapies for lymphoma, but the best targets for this purpose remain unknown. Here, we sought to define a comprehensive repertoire of cell surface antigens that can be targeted to stimulate macrophage-mediated destruction of B-cell lymphoma. We developed a high-throughput assay to screen hundreds of antibodies for their ability to provoke macrophages to attack B-cell lymphoma cells. Across both mouse and human systems, we identified multiple unappreciated targets of opsonization as well as putative immune checkpoints. We used this information to engineer a compendium of 156 bispecific antibodies, and we identified dozens of bispecifics that dramatically stimulate macrophage-mediated cytotoxicity of lymphoma cells. Among these, a bispecific comprising a SIRPα decoy domain and a CD38-targeting arm (WTa2d1×CD38) exhibited maximal efficacy while minimizing the risk of hematologic toxicity. This bispecific stimulated robust anti-tumor responses in multiple xenograft models of aggressive B-cell lymphoma. Our approach can be directly applied to other cancers to rapidly discover bispecific antibodies that leverage anti-tumor responses by macrophages or other innate immune cells.