In genotype-by-environment interactions (GxE), the effect of a genetic variant on a trait depends on the environment. GxE influences numerous organismal traits across eukaryotic life. However, we have a limited understanding of how GxE shapes the molecular processes that give rise to organismal traits. Here, we characterized how GxE shapes protein degradation, an essential molecular process that influences numerous aspects of cellular and organismal physiology. Using the yeast Saccharomyces cerevisiae, we characterized GxE in the activity of the ubiquitin-proteasome system (UPS), the primary protein degradation system in eukaryotes. By mapping genetic influences on the degradation of six substrates that engage multiple distinct UPS pathways across eight diverse environments, we discovered extensive GxE in the genetics of UPS activity. Hundreds of locus effects on UPS activity varied depending on the substrate, the environment, or both. Most of these cases corresponded to loci that were present in one environment but not another ("presence / absence" GxE), while a smaller number of loci had opposing effects in different environments ("sign change" GxE). The number of loci exhibiting GxE, their genomic location, and the type of GxE (presence / absence or sign change) varied across UPS substrates. Loci exhibiting GxE were clustered at genomic regions that contain core UPS genes and especially at regions containing variation that affects the expression of thousands of genes, suggesting indirect contributions to UPS activity. Our results reveal highly complex interactions at the level of substrates and environments in the genetics of protein degradation.