The tiny parasitoid wasp Trichogramma kaykai inhabits the Mojave Desert of the southwest United States. Populations of this tiny insect variably host up to two different sex-distorting genetic elements: (1) the endosymbiotic bacterium Wolbachia which induces the parthenogenetic reproduction of females, and (2) a B-chromosome, "Paternal Sex Ratio" (PSR), which converts would-be female offspring to PSR-transmitting males. We report here the genome of a Wolbachia-infected Trichogramma kaykai isofemale colony KSX58. Using Oxford Nanopore sequencing we produced a final genome assembly of 203 Mbp with 45x coverage, consisting of 213 contigs with an N50 of 1.9 Mbp. The assembly is quite complete, with 91.41% complete BUSCOs recovered: a very high score for Trichogrammatids that have been previously characterized for having high levels of core gene losses. We also report a complete mitochondrial genome for T. kaykai, and an assembly of the associated Wolbachia, strain wTkk. We identified copies of the parthenogenesis-inducing genes pifA and pifB in a remnant prophage region of the wTkk genome. The Trichogramma kaykai assembly is the highest quality genome assembly for the genus to-date and will serve as a great resource for understanding the evolution of sex and selfish genetic elements.
Keywords: B chromosome; Trichogramma kaykai; Wolbachia; selfish genetic element; sex ratio; symbiosis.