Elevated expression of components of eIF4F translation initiation complex has been documented in cancer, resulting in enhanced translation of mRNAs encoding pro-tumorigenic factors, including oncogenic proteins. We previously identified SBI-756, a small molecule that interferes with the eIF4F assembly and overcomes melanoma resistance to BRAF inhibitors. SBI-756 enhanced anti-tumor immunity in pancreatic cancer and was effective in the treatment of diffuse large B cell lymphoma. Here, we identified the eIF4G1 MA3 (4G1-MA3) domain as the target of SBI-756, attenuating eIF4F complex assembly. Melanoma cells expressing a mutant form of 4G1-MA3 exhibited polysome profiles resembling those of melanoma cells treated with SBI-756. A structure-based in silico screen against the eIF4G1 MA3 domain identified M19, a small molecule inhibitor that exhibited anti-melanoma effects. RNA sequencing (RNA-seq) revealed upregulation of UPR, mTOR, p53, and ROS signaling in M19-treated melanoma cells. Ribosome sequencing identified changes in ribosomal structure and electron transport chain components following M19-6 treatment of melanoma cells. Autophagy and histone deacetylase inhibitors were found to enhance anti-neoplastic activities of M19 or its analog, M19-6. M19-6 conferred a greater effect on melanoma than melanocytes and overcame melanoma resistance to BRAF or MEK inhibitors. Alone, M19-6 reduced melanoma growth and metastasis in a xenograft model. M19-6 offers a new therapeutic modality to overcome resistance and metastasis.