Comprehensive characterization of gas dynamic virtual nozzles for x-ray free-electron laser experiments

Struct Dyn. 2024 Nov 26;11(6):064302. doi: 10.1063/4.0000262. eCollection 2024 Nov.

Abstract

We introduce a hardware-software system for rapidly characterizing liquid microjets for x-ray diffraction experiments. An open-source python-based software package allows for programmatic and automated data collection and analysis. We show how jet speed, length, and diameter are influenced by nozzle geometry, gas flow rate, liquid viscosity, and liquid flow rate. We introduce "jet instability" and "jet probability" metrics to help quantify the suitability of a given nozzle for x-ray diffraction experiments. Among our observations were pronounced improvements in jet stability and reliability when using asymmetric needle-tipped nozzles, which allowed for the production of microjects smaller than 250 nm in diameter, traveling faster than 120 m/s.