Early-life challenge enhances cortisol regulation in zebrafish larvae

Biol Open. 2024 Dec 15;13(12):bio061684. doi: 10.1242/bio.061684. Epub 2024 Nov 28.

Abstract

The hypothalamic-pituitary-adrenal (HPA) axis in mammals and the hypothalamic-pituitary-interrenal (HPI) axis in fish are open systems that adapt to the environment during development. Little is known about how this adaptation begins and regulates early stress responses. We used larval zebrafish to examine the impact of prolonged forced swimming at 5 days post-fertilization (dpf), termed early-life challenge (ELC), on cortisol responses, neuropeptide expression in the nucleus preopticus (NPO), and gene transcript levels. At 6 dpf, ELC-exposed larvae showed normal baseline cortisol but reduced reactivity to an initial stressor. Conversely, they showed increased reactivity to a second stressor within the 30-min refractory period, when cortisol responses are typically suppressed. ELC larvae had fewer corticotropin-releasing hormone (crh), arginine vasopressin (avp), and oxytocin (oxt)-positive cells in the NPO, with reduced crh and avp co-expression. Gene expression analysis revealed upregulation of genes related to cortisol metabolism (hsd11b2, cyp11c1), steroidogenesis (star), and stress modulation (crh, avp, oxt). These results suggest that early environmental challenge initiates adaptive plasticity in the HPI axis, tuning cortisol regulation to balance responsiveness and protection during repeated stress. Future studies should explore the broader physiological effects of prolonged forced swimming and its long-term impact on cortisol regulation and stress-related circuits.

Keywords: Cortisol regulation; Developmental programming; Early-life challenge; HPI axis; Stress response; Zebrafish larvae.

MeSH terms

  • Animals
  • Gene Expression Regulation
  • Hydrocortisone* / metabolism
  • Hypothalamo-Hypophyseal System / metabolism
  • Larva* / metabolism
  • Pituitary-Adrenal System / metabolism
  • Stress, Physiological*
  • Zebrafish*

Substances

  • Hydrocortisone